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ABSTRACT
Although it has been known since the 1970s that a globally optimal

strategy profile in a common-payoff game is a Nash equilibrium,

global optimality is a strict requirement that limits the result’s

applicability. In this work, we show that any locally optimal sym-

metric strategy profile is also a (global) Nash equilibrium. Applied

to machine learning, our result provides a global guarantee for any

gradient method that finds a local optimum in symmetric strategy

space. Furthermore, we show that this result is robust to pertur-

bations to the common payoff and to the local optimum. While

these results indicate stability to unilateral deviation, we neverthe-
less identify broad classes of games where mixed local optima are

unstable under joint, asymmetric deviations. We analyze the preva-

lence of instability by running learning algorithms in a suite of

symmetric games, and we conclude with results on the complexity

of computing game symmetries.
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1 INTRODUCTION
We consider common-payoff games (also known as identical inter-
est games [38]), in which the payoff to all players is always the

same.
1
Such games model a wide range of situations involving

1
This condition is relaxed in (weighted) potential games where the players’ payoffs
need only imply the same ordering of outcomes [33]; (weighted) potential games are

best-response equivalent to common-payoff games [15, 26].
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cooperative action towards a common goal. Under the heading of

team theory, they form an important branch of economics [19, 20].

In AI, the common-payoff assumption holds in Dec-POMDPs [25],
where multiple agents operate independently according to policies

designed centrally to achieve a common objective. Many applica-

tions of multiagent reinforcement learning also assume a common

payoff [7, 8, 12]. Finally, in assistance games [31] (also known as

cooperative inverse reinforcement learning or CIRL games [13]),

which include at least one human and one or more “robots,” it is

assumed that the robots’ payoffs are exactly the human’s payoff,

even if the robots do not know what it is.

Common-payoff games lead naturally to considerations of sym-

metry in game structure—for example, the assumption that two

players’ actions produce the same effect on the common payoff.

Indeed, von Neumann and Morgenstern [41] and Nash [23] intro-

duced fairly general group-theoretic notions of symmetry, which

we adopt and explain in Section 2. More recent work has analyzed

narrower notions of symmetry [22, 30, 39]. For example, Daskalakis

and Papadimitriou [5] study “anonymous games” and show that

anonymity substantially reduces the complexity of finding solutions.

Finally, Ham [14] generalizes the player-based notion of symmetry

to include further symmetries revealed by renamings of actions.

We conjecture our results extend to this more general case, at some

cost in notational complexity, but we leave this to future work.

In games exhibiting symmetry, it is then reasonable to consider

symmetry in players’ strategies. (Section 2 defines this in a precise

sense.) For example, in team theory, it is common to develop a

strategy that can be implemented by every employee in a given

category and leads to high payoff for the company. (Notice that

this does not lead to identical behavior, because strategies are state-
dependent.) In civic contexts, symmetry commonly arises through

notions of fairness and justice. In treaty negotiations and legislation

that mandates how parties behave, for example, there is often a

constraint that all parties be treated equally. In DecPOMDPs, an

offline solution search may consider only symmetric strategies for

identical agents as a way of reducing the search space. In common-

payoff multiagent reinforcement learning, each agent may collect

percepts and rewards independently, but the reinforcement learning

updates can be pooled to learn a single parameterized policy that

all agents share.

Common-payoff and symmetric games have a number of desir-

able properties that may simplify the search for solutions. For the



Bo

L W

Ali

L 1 2

W 0 1

(a) Bo cannot do laundry

Bo

L W

Ali

L 1 2

W 2 1

(b) Bo learns to do laundry

Bo

L W

Ali

L 3 2

W 2 3

(c) Joy in working together
Table 1: Three versions of the laundry/washing up game. Solutions are described in the text.

purposes of this paper, we consider Nash equilibria—strategy pro-

files for all players fromwhich no individual player has an incentive

to deviate—as a reasonable solution concept. For example, Marschak

and Radner [20] make the obvious point that a globally optimal

(possibly asymmetric) strategy profile—one that achieves the high-

est common payoff—is necessarily a Nash equilibrium. Moreover,

it can be found in time linear in the size of the payoff matrix.

Another solution concept often used in multiagent RL and dif-

ferential (i.e., continuous-action-space) games is that of a locally
optimal strategy profile—roughly speaking, a strategy profile from

which no player has an incentive to slightly deviate. Obviously, a

locally optimal profile may not be a Nash equilibrium, as a player

may still have an incentive to deviate to some more distant point

in strategy space. Nonetheless, local optima, sometimes called local
Nash equilibria—are important. For example, Ratliff et al. [29] argue

that a local Nash equilibrium may still be stable in a practical sense

if agents are computationally unable to find a better strategy. Simi-

larly, gradient-based game solvers and multiagent RL algorithms

may converge to local optima.

Our first main result, informally stated, is that in a symmetric,
common-payoff game, every local optimum in symmetric strategies is
a (global) Nash equilibrium. Section 3 states the result more precisely

and gives an example illustrating its generality.
2
Despite many

decades of research on symmetric, common-payoff games, the result

appears to be novel and perhaps useful. There are some echoes of the

result in the literature on single-agent decision making [4, 27, 32],

which can be connected to symmetric solutions of common-payoff

games by treating all players jointly as a single agent, but our result

appears more general than published results. The proof we give of

our result contains elements similar to the proof (of a related but

different result) in Taylor [34].

To gain some intuition for these concepts and claims, let us

consider a situation in which two children, Ali and Bo, have to

do some housework—specifically, laundry (𝐿) and washing up (𝑊 ).

Here, the “common payoff,” if any, is to the parents. It is evident

that a symmetric strategy profile—both doing the laundry or both

doing the washing up—is not ideal, because the other task will not

get done.

The first version of the game, whose payoffs 𝑈 are shown in

Table 1a, is asymmetric: while Ali is competent at both tasks, Bo

does not know how to do the laundry properly and will ruin the

clothes. Here, as Marschak and Radner pointed out, the strategy

profile (𝐿,𝑊 ) is both globally optimal and a Nash equilibrium. If

we posit a mixed (randomized) strategy profile in which Ali and Bo

have laundry probabilities 𝑝 and𝑞 respectively, the gradients 𝜕𝑈 /𝜕𝑝
and 𝜕𝑈 /𝜕𝑞 are +1 and −1, driving the solution towards (𝐿,𝑊 ).

2
Complete proofs for all of our results are in the appendices.

Figure 1: The strategy profile landscape of the symmetric
laundry game (Figure 1b). Although the symmetric opti-
mum has lower expected utility than the unrestricted op-
tima, total symmetry of the game implies that the symmet-
ric optimum is a Nash equilibrium; this is a special case of
Theorem 3.2.

In the second version of the game (Table 1b), Ali has taught Bo

how to do the laundry, and symmetry is restored. The pure profiles

(𝐿,𝑊 ) and (𝑊, 𝐿) are (asymmetric) globally optimal solutions and

hence Nash equilibria. Figure 1 shows the entire payoff landscape as

a function of 𝑝 and 𝑞: looking just at symmetric strategy profiles, it

turns out that there is a local optimum at 𝑝 = 𝑞 = 0.5, i.e., where Ali

and Bo toss fair coins to decide what to do. Although the expected

payoff of this solution is lower than that of the asymmetric optima,

the local optimum is, nonetheless, a Nash equilibrium. All unilateral

deviations from the symmetric local optimum result in the same

expected payoff because if one child is tossing a coin, the other

child can do nothing to improve the final outcome.

In the third version of the game (Table 1c), the parents derive

greater payoff from watching their children working happily to-

gether on a single task than they do from getting both tasks done. In

this case, there is again a Nash equilibrium at 𝑝 = 𝑞 = 0.5, but it is a

local minimum rather than a local maximum in symmetric strategy

space. Thus, not all symmetric Nash equilibria are symmetric local

optima; this is because Nash equilibria depend on unilateral devia-
tions, whereas symmetric local optima depend on joint deviations
that maintain symmetry.

In the second half of the paper, we turn to the issue of robustness
of symmetric solutions. In practice, a variety of factors can lead to



modelling errors and approximate solutions, which motivates us

to consider perturbations in payoffs and strategy profiles. Making

general arguments about Nash equilibria, we show that our first

main result is robust in the sense that it degrades linearly under

𝜖-magnitude perturbations into 𝑘𝜖-Nash equilibria (for some game-

dependent constant 𝑘).

Stability turns out to be a thornier issue. Instability, if not han-

dled carefully, might lead to major coordination failures in practice

[3]. While it is already known that local strict optima in a totally

symmetric team game attain one type of stability, the issue is com-

plex because there are several ways of enforcing (or not enforcing)

strict symmetries in payoffs and strategies [22]. Our final results fo-

cus on the stability of agents making possibly-asymmetric updates

from a symmetric solution. We prove for a non-degenerate class

of games that local optima in symmetric strategy space fail to be

local optima in asymmetric strategy space if and only if at least one

player is mixing, and we experimentally quantify how often mixing

occurs for learning algorithms in the GAMUT suite of games [24].

2 PRELIMINARIES: GAMES AND
SYMMETRIES

2.1 Normal-form games
Throughout, we consider normal-form games G = (𝑁,𝐴,𝑢) defined
by a finite set 𝑁 with |𝑁 | = 𝑛 players, a finite set of action profiles

𝐴 = 𝐴1 ×𝐴2 × . . . ×𝐴𝑛 with 𝐴𝑖 specifying the actions available to

player 𝑖 , and the utility function 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) with 𝑢𝑖 : 𝐴 →
R giving the utility for each player 𝑖 [33]. We call G common-payoff
if 𝑢𝑖 (𝑎) = 𝑢 𝑗 (𝑎) for all action profiles 𝑎 ∈ 𝐴 and all players 𝑖, 𝑗 . In

common-payoff games we may omit the player subscript 𝑖 from

utility functions.

We model each player as employing a (mixed) strategy 𝑠𝑖 ∈
Δ(𝐴𝑖 ), a probability distribution over actions. We denote the

support of the probability distribution 𝑠𝑖 by supp(𝑠𝑖 ). Given a

(mixed) strategy profile 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) that specifies a strat-

egy for each player, player 𝑖’s expected utility is 𝐸𝑈𝑖 (𝑠) =∑
𝑎∈𝐴 𝑢𝑖 (𝑎)

∏𝑛
𝑗=1 𝑠 𝑗 (𝑎 𝑗 ). If a strategy 𝑠𝑖 for player 𝑖 maximizes ex-

pected utility given the strategies 𝑠−𝑖 of all the other players, i.e., if
𝑠𝑖 ∈ argmax𝑠′

𝑖
∈Δ(𝐴𝑖 ) 𝐸𝑈𝑖 (𝑠

′
𝑖
, 𝑠−𝑖 ), we call 𝑠𝑖 a best response to 𝑠−𝑖 . If

each strategy 𝑠𝑖 in a strategy profile 𝑠 is a best response to 𝑠−𝑖 , we
call 𝑠 a Nash equilibrium. A Nash equilibrium 𝑠 is strict if every 𝑠𝑖
is the unique best response to 𝑠−𝑖 .

Note that, while we have chosen to use the normal-form game

representation for simplicity, normal-form games are highly ex-

pressive. Normal-form games can represent mixed strategies in all

finite games, including games with sequential actions, stochastic

transitions, and partial observation such as imperfect-information

extensive form games with perfect recall, Markov games, and Dec-

POMDPs. To represent a sequential game in normal form, one

simply lets each normal-form action be a complete strategy (con-

tingency plan) accounting for every potential game decision.

2.2 Symmetry in game structure
Our notion of symmetry in game structure is built upon von Neu-

mann and Morgenstern [41]’s and borrows notation from Plan [28].

The basic building block is a symmetry of a game:

Definition 2.1. Call a permutation of player indices 𝜌 :

{1, 2, ..., 𝑛} → {1, 2, ..., 𝑛} a symmetry of a game G if, for all strategy

profiles (𝑠1, 𝑠2, ..., 𝑠𝑛), permuting the strategy profile permutes the

expected payoffs:

𝐸𝑈𝜌 (𝑖) ((𝑠1, 𝑠2, ..., 𝑠𝑛)) = 𝐸𝑈𝑖 ((𝑠𝜌 (1) , 𝑠𝜌 (2) , ..., 𝑠𝜌 (𝑛) )), ∀𝑖 .
Note that, when we speak of a symmetry of a game, we implicitly

assume 𝐴𝑖 = 𝐴 𝑗 for all 𝑖, 𝑗 with 𝜌 (𝑖) = 𝑗 so that permuting the

strategy profile is well-defined.
3

We characterize the symmetric structure of a game by its set of

game symmetries:

Definition 2.2. Denote the set of all symmetries of a game G by:

Γ(G) = {𝜌 : {1, 2, ..., 𝑛} → {1, 2, ..., 𝑛} a symmetry of G}.

A spectrum of game symmetries is possible. On one end of the

spectrum, the identity permutation might be the only symmetry

for a given game. On the other end of the spectrum, all possible

permutations might be symmetries for a given game. Following the

terminology of von Neumann and Morgenstern [41], we call the

former case totally unsymmetric and the latter case totally symmet-
ric:

Definition 2.3. If Γ(G) = 𝑆𝑛 , the full symmetric group, we call

the game Γ(G) totally symmetric. If Γ(G) contains only the identity
permutation, we call the game totally unsymmetric.

Let P ⊆ Γ(G) be any subset of the game symmetries. Because

Γ(G) is closed under composition, we can repeatedly apply permu-

tations in P to yield a group of game symmetries ⟨P⟩:

Definition 2.4. Let P ⊆ Γ(G) be a subset of the game symmetries.

The group generated by P, denoted ⟨P⟩, is the set of all permuta-

tions that can result from (possibly repeated) composition of permu-

tations in P: ⟨P⟩ = {𝜌1 ◦ 𝜌2 ◦ . . . ◦ 𝜌𝑚 |𝑚 ∈ N, 𝜌1, 𝜌2, . . . , 𝜌𝑚 ∈ P}.

Group theory tells us that ⟨P⟩ defines a closed binary operation

(permutation composition) including an identity and inverse maps,

and ⟨P⟩ is the closure of P under function composition.

With a subset of game symmetries P ⊆ Γ(G) in hand, we can

use the permutations in P to carry one player index to another. For

each player 𝑖 , we give a name to the set of player indices to which

permutations in P can carry 𝑖: we call it player 𝑖’s orbit.

Definition 2.5. Let P ⊆ Γ(G) be a subset of the game symmetries

Γ(G). The orbit of player 𝑖 under P is the set of all other player

indices that ⟨P⟩ can assign to 𝑖: P(𝑖) = {𝜌 (𝑖) | 𝜌 ∈ ⟨P⟩}.

In fact, it is a standard result from group theory that the orbits

of a group action on a set partition the set’s elements, which leads

to the following proposition:

Proposition 2.6. Let P ⊆ Γ(G). The orbits of P partition the
game’s players.

By Proposition 2.6, eachP ⊆ Γ(G) yields an equivalence relation
among the players. To gain intuition for this equivalence relation,

consider two extreme cases. In a totally unsymmetric game, Γ(G)
contains only the identity permutation, in which case each player

3
We make this choice to ease notational burden, but we conjecture that our results

can be generalized to allow for mappings between actions [14], which we leave for

future work.



is in its own orbit of Γ(G); the equivalence relation induced by the

orbit partition shows that no players are equivalent. In a totally

symmetric game, by contrast, every permutation is an element of

Γ(G), i.e., Γ(G) = 𝑆𝑛 , the full symmetric group; now, all the players

share the same orbit of Γ(G), and the equivalence relation induced

by the orbit partition shows that all the players are equivalent.

We leverage the orbit structure of an arbitrary P ⊆ Γ(G) to
define an equivalence relation among players because it adapts to

however much or little symmetry is present in the game. Between

the extreme cases of no symmetry (𝑛 orbits) and total symmetry (1

orbit) mentioned above, there could be any intermediate number of

orbits of P. Furthermore, two players can share an orbit of P even

if those two players cannot be arbitrarily swapped. In Example 3.3,

all the players can be rotated in a circle, so all the players share an

orbit of P = Γ(G) even though the game does not admit arbitrary

swapping of players.

2.3 Symmetry in strategy profiles
Having formalized a symmetry of a game in the preceding section,

we follow Nash [23] and define symmetry in strategy profiles with

respect to symmetry in game structure:

Definition 2.7. Let P ⊆ Γ(G) be a subset of the game symmetries

Γ(G). We call a strategy profile 𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛) P-invariant if
(𝑠1, 𝑠2, ..., 𝑠𝑛) = (𝑠𝜌 (1) , 𝑠𝜌 (2) , ..., 𝑠𝜌 (𝑛) ) for all 𝜌 ∈ ⟨P⟩.

The equivalence relation among players induced by the orbit

structure of P is fundamental to our definition of symmetry in

strategy profiles by the following proposition:

Proposition 2.8. A strategy profile 𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛) isP-invariant
if and only if 𝑠𝑖 = 𝑠 𝑗 for each pair of players 𝑖 and 𝑗 with P(𝑖) = P( 𝑗).

To state Proposition 2.8 another way, a strategy profile is P-

invariant if all pairs of players 𝑖 and 𝑗 that are equivalent under the

orbits of P play the same strategy.

3 LOCAL SYMMETRIC OPTIMA ARE
(GLOBAL) NASH EQUILIBRIA

After the formal definitions of symmetry in the previous section,

we are almost ready to formally state the first of our three main

results. The only remaining definition is that of a local symmetric

optimum:

Definition 3.1. Call 𝑠 a locally optimalP-invariant strategy profile
of a common-payoff game if: (i) 𝑠 is P-invariant, and (ii) for some

𝜖 > 0, no P-invariant strategy 𝑠 ′ with 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠) can be

formed by adding or subtracting at most 𝜖 to the probability of

taking any given action 𝑎𝑖 ∈ 𝐴𝑖 . If, furthermore, condition (ii) holds

for all 𝜖 > 0, we call 𝑠 a globally optimal P-invariant strategy profile
or simply an optimal P-invariant strategy profile.

Now we can formally state our first main theorem, that local

symmetric optima are (global) Nash equilibria:

Theorem 3.2. Let G be a common-payoff normal-form game, and
let P ⊆ Γ(G) be a subset of the game symmetries Γ(G). Any locally
optimal P-invariant strategy profile is a Nash equilibrium.

Proof. We provide a sketch here and full details in Appendix A.

Suppose, for the sake of contradiction, that an individual player

𝑖 could beneficially deviate to action 𝑎𝑖 (if a beneficial deviation

exists, then there is one to a pure strategy). Then, consider instead

a collective change to a symmetric strategy profile in which all the

players in 𝑖’s orbit shift very slightly more probability to 𝑎𝑖 . By

making the amount of probability shifted ever smaller, the proba-

bility that this change affects exactly one agent’s realized action

(making it 𝑎𝑖 when it would not have been before) can be arbitrarily

larger than the probability that it affects multiple agents’ realized

actions. Moreover, if this causes exactly one agent’s realized action

to change, this must be in expectation beneficial, since the origi-

nal unilateral deviation was in expectation beneficial. Hence, the

original strategy profile cannot have been locally optimal. □

3.1 Example illustrating general symmetry
Here, we give an example that shows how Theorem 3.2 is more

general than the case of total symmetry. The example illustrates

the existence of rotational symmetry without total symmetry, and

it illustrates how picking different P ⊆ Γ(G) leads to different

optimal P-invariant strategies and thus different P-invariant Nash

equilibria by Theorem 3.2.

Example 3.3. There are four radio stations positioned in a square.

We number these 1,2,3,4 clockwise, such that, e.g., 1 neighbors 4

and 2. There is also a neighborhood of people at each vertex of the

square. The people can tune in to the radio station at their vertex

of the square and to the radio stations at adjacent vertices of the

square, but they cannot tune in to the station at the opposite vertex.

The game has each radio station choose what to broadcast. For

simplicity, suppose each radio station can broadcast the weather or

music. The common payoff of the game is the sum of the utilities

of the four neighborhoods. For each neighborhood, if the neighbor-

hood cannot tune in to the weather, the payoff for that neighbor-

hood is 0. If the neighborhood can only tune in to the weather, the

payoff is 1, and if the neighborhood can tune in to both weather

and music, the neighborhood’s payoff is 2.

The symmetries of the game Γ(G) include the set of

permutations generated by rotating the radio stations

once clockwise. In standard notation for permutations,

{(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)} ⊂ Γ(G).
First, consider applying the theorem to P = Γ(G). In this case,

the constraint of P-invariance requires all the radio stations to play

the same strategy because all stations are in the same orbit. As we

show in Appendix B, the optimal P-invariant strategy then is for

each station to broadcast music with probability

√
2−1. Theorem 3.2

tells us that this optimal P-invariant strategy profile is a Nash

equilibrium. Appendix B also shows how to verify this without the

use of Theorem 3.2.

Second, consider applying the theorem to the case where P
consists only of the rotation twice clockwise, i.e., the permutation

which maps each station onto the station on the opposite vertex of

the square. In standard notation for permutations, P = {(3, 4, 1, 2)}.
Now, the constraint of P-invariance requires radio stations at op-

posite vertices of the square to play the same strategy. However,

neighboring stations can broadcast different programs. The optimal

P-invariant strategy is for one pair of opposite-vertex radio sta-

tions, e.g., 1 and 3, to broadcast the weather and for the other pair

of radio stations, 2 and 4, to broadcast music. While it turns out to



be immediate that this optimal P-invariant strategy is a Nash equi-

librium because it achieves the globally optimal outcome, we could

have applied Theorem 3.2 to know that this optimal P-invariant

strategy profile is a Nash equilibrium even without knowing what
the optimal P-invariant strategy was.

4 ROBUSTNESS OF THE MAIN RESULT TO
PAYOFF AND STRATEGY PERTURBATIONS

The first type of robustness we consider is robustness to pertur-

bations in the game’s payoff function. Formally, we define an 𝜖-
perturbation of a game as follows:

Definition 4.1. LetG be a normal-form gamewith utility function

𝜇. For some 𝜖 > 0, we call G′
an 𝜖-perturbation of G if G′

has utility

function 𝜇 ′ satisfying max𝑖∈𝑁,𝑎∈𝐴 |𝑢 ′𝑖 (𝑎) − 𝑢𝑖 (𝑎) | ≤ 𝜖 .

There are a variety of reasons why 𝜖-perturbations might arise in

practice. Our game model may contain errors such as the game not

being perfectly symmetric; the players’ preferences might drift over

time; or we might have used function approximation to learn the

game’s payoffs. With Proposition 4.2, we note a generic observation

about Nash equilibria showing that our main result, Theorem 3.2, is

robust in the sense of degrading linearly in the payoff perturbation’s

size:

Proposition 4.2. Let G be a common-payoff normal-form game,
and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetriesP ⊆ Γ(G). Suppose𝐺 ′ is an 𝜖-perturbation
of G. Then 𝑠∗ is a 2𝜖-Nash equilibrium in G′.

The second type of robustness we consider is robustness to sym-

metric solutions that are only approximate. For example, we might

try to find a symmetric local optimum through an approximate

optimization method, or the evolutionary dynamics among play-

ers’ strategies might lead them to approximate local symmetric

optima. Again, a generic result about Nash equilibria shows that

the guarantee of Theorem 3.2 degrades linearly in this case:

Theorem 4.3. Let G be a common-payoff normal-form game,
and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetries P ⊆ Γ(G). Suppose 𝑠 is a strategy profile
with total variation distance 𝑇𝑉 (𝑠, 𝑠∗) ≤ 𝛿 . Then 𝑠 is an 𝜖-Nash
equilibrium with 𝜖 = 4𝛿 max𝑖∈𝑁,𝑎∈𝐴 |𝑢𝑖 (𝑎) |.

By Theorem 4.3, we have a robustness guarantee in terms of the

total variation distance between an approximate local symmetric

optimum and a true local symmetric optimum. Without much diffi-

culty, we can also convert this into a robustness guarantee in terms

of the Kullback-Leibler divergence:

Corollary 4.4. Let G be a common-payoff normal-form game,
and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetries P ⊆ Γ(G). Suppose 𝑠 is a strategy
profile with Kullback-Leibler divergence satisfying 𝐷𝐾𝐿 (𝑠 | |𝑠∗) ≤
𝜈 or 𝐷𝐾𝐿 (𝑠∗ | |𝑠) ≤ 𝜈 . Then 𝑠 is an 𝜖-Nash equilibrium with 𝜖 =

2

√
2𝜈 max𝑖∈𝑁,𝑎∈𝐴 |𝑢𝑖 (𝑎) |.

While the results of this section show the robustness of Nash

equilibria, we note that Nash equilibria, by definition, consider the

possibility of only a single agent deviating; Nash equilibria cannot

guarantee stability under dynamics that allow for multiple agents

to deviate. In the next section, we investigate when multiple agents

might have an incentive to simultaneously deviate by studying the

optimality of symmetric strategy profiles in possibly-asymmetric

strategy space.

5 WHEN ARE LOCAL OPTIMA IN
SYMMETRIC STRATEGY SPACE ALSO
LOCAL OPTIMA IN
POSSIBLY-ASYMMETRIC STRATEGY
SPACE?

Our first main theoretical result, Theorem 3.2, applies to locally

optimal P-invariant, i.e., symmetric, strategy profiles. This still

leaves open the question of how well locally optimal symmetric

strategy profiles perform when considered in the broader, possibly-

asymmetric strategy space. When are locally optimal P-invariant

strategy profiles also locally optimal in possibly-asymmetric strat-

egy space? This question is important in machine learning (ML)

applications where users of symmetrically optimal ML systems

might be motivated to make modifications to the systems, even for

purposes of a common payoff.

To address this issue more precisely, we formally define a local
optimum in possibly-asymmetric strategy space:

Definition 5.1. A strategy profile 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) of a common-

payoff normal-form game is locally optimal among possibly-
asymmetric strategy profiles, or, equivalently, a local optimum in
possibly-asymmetric strategy space, if for some 𝜖 > 0, no strategy

profile 𝑠 ′ with 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠) can be formed by changing 𝑠 in

such a way that the probability of taking any given action 𝑎𝑖 ∈ 𝐴𝑖
for any player 𝑖 changes by at most 𝜖 .

Definition 5.1 relates to notions of stability under dynamics, such

as those with perturbations or stochasticity, that allow multiple

players to make asymmetric deviations. In particular, if 𝑠 is not a

local maximum in asymmetric strategy space, this means that there

is some set of players 𝐶 and strategy 𝑠 ′
𝐶
arbitrarily close to 𝑠 , such

that if players𝐶 were to play 𝑠 ′
𝐶
(by mistake or due to stochasticity),

some Player 𝑖 ∈ 𝑁 −𝐶 would develop a strict preference over the

support of 𝑠𝑖 . To illustrate this, we return to the laundry/washing

up game of the introduction.

Example 5.2. Consider again the game of Table 1b. As Figure 1

illustrates, the symmetric optimum is for both Ali and Bo to random-

ize uniformly between W and L. While this is a Nash equilibrium,

it is not a local optimum in possibly-asymmetric strategy space. If

one player deviates from uniformly randomizing, the other player

develops a strict preference for either𝑊 or 𝐿.

To understand when the phenomenon of Example 5.2 happens

in general, we use the following degeneracy condition:

Definition 5.3. Let 𝑠 be a Nash equilibrium of a game G:

• If 𝑠 is deterministic, i.e., if every 𝑠𝑖 is a Dirac delta function

on some 𝑎𝑖 , then 𝑠 is degenerate if at least two players 𝑖 are

indifferent between 𝑎𝑖 and some other 𝑎′
𝑖
∈ 𝐴𝑖 − {𝑎𝑖 }.

• Otherwise, if 𝑠 is mixed, then 𝑠 is degenerate if for all players
𝑖 and all 𝑎−𝑖 ⊆ supp(𝑠−𝑖 ), the term 𝐸𝑈𝑖 (𝑎𝑖 , 𝑎−𝑖 ) is constant
across 𝑎𝑖 ∈ supp(𝑠𝑖 ).



Intuitively, our definition says that a deterministic Nash equilib-

rium is non-degenerate when it is strict or almost strict (allowing

the exception of at most one player who may be indifferent over

available actions). A mixed Nash equilibrium, on the other hand, is

non-degenerate when mixing matters. When speaking of a game

G, we determine its degeneracy by the degeneracy of its Nash

equilibria:

Definition 5.4. We call a game G degenerate if it has at least one
degenerate Nash equilibrium; otherwise, we call G non-degenerate.

We note that “degnerate” is already an established term in the

game-theoretical literature where it is often applied only to two-

player games [see, e.g, 42, Definition 3.2]. While similar to the

established notion of degeneracy, our definition of degeneracy is

stronger, which makes our statements about non-degenerate games

more general. If a two-player game G is non-degenerate in the

usual sense from the literature, it is non-degenerate in the sense

of Definition 5.3. Moreover, if G is common-payoff, then for each

player 𝑖 , we can define a two-player game played by 𝑖 and another

single player who controls the strategies of 𝑁 − {𝑖}. If for all 𝑖 these
two-player games are non-degenerate in the established sense, then

G is non-degenerate in the sense of Definition 5.3.

In non-degenerate games, our next theorem shows that a local

symmetric optimum is a local optimum in possibly-asymmetric

strategy space if and only if it is deterministic. Formally:

Theorem 5.5. Let G be a non-degenerate common-payoff normal-
form game, and let P ⊆ Γ(G) be a subset of the game symmetries
Γ(G). A locally optimal P-invariant strategy profile is locally opti-
mal among possibly-asymmetric strategy profiles if and only if it is
deterministic.

To see why the (non-)degeneracy condition is needed in Theo-

rem 5.5, we provide an example of a degenerate game:

Example 5.6. Consider the 3x3 symmetric game with the follow-

ing payoff matrix:

Player 2

a b c

Player 1

a 1 1 1

b 1 -10 1 + 𝜖
c 1 1 + 𝜖 -10

Here, (𝑎, 𝑎) is the unique global optimum in symmetric strategy

space. By Theorem 3.2, it is therefore also a Nash equilibrium. How-

ever, it is a degenerate Nash equilibrium and not locally optimal

in asymmetric strategic space. The payoff can be improved by, e.g.,

Player 1 playing 𝑏 with small probability (and 𝑎 otherwise) and

Player 2 playing 𝑐 with small probability (and 𝑎 otherwise).

The following game illustrates how a global symmetric optimum,

even if it is a non-degenerate, deterministic equilibrium, might still

not be globally optimal in possibly-asymmetric strategy space.

Example 5.7. Consider |𝑁 | = 3 and 𝐴 = {0, 1}, let 𝑘 be the

number of players who choose action 1, and let the payoffs be: 0 if

𝑘 = 0, −1 if 𝑘 = 1, 1 if 𝑘 = 2, and −1 if 𝑘 = 3.

Then the global symmetric optimum is for everyone to play 0.

The global asymmetric optimum, on the other hand, is to coordi-

nate to achieve 𝑘 = 2. Hence, the global symmetric optimum is

strictly worse than the global asymmetric optimum. Of course, by

Theorem 5.5, (0, 0, 0) is still a local optimum of asymmetric strategy

space.

6 LEARNING SYMMETRIC STRATEGIES IN
GAMUT

Theorem 5.5 shows that, in non-degenerate games, a locally optimal

symmetric strategy profile is stable in the sense of Section 5 if and

only if it is pure. For those concerned about stability, this raises the

question: how often are optimal strategies pure, and how often are

they mixed?

To answer this question, we present an empirical analysis of

learning symmetric strategy profiles in the GAMUT suite of game

generators [24]. We are interested both in how centralized optimiza-

tion algorithms (such as gradient methods) search for symmetric

strategies and in how decentralized populations of agents evolve

symmetric strategies. To study the former, we run Sequential Least

SQuares Programming (SLSQP) [17, 40], a local search method

for constrained optimization. To study the latter, we simulate the

replicator dynamics [9], an update rule from evolutionary game

theory with connections to reinforcement learning [2, 36, 37]. (See

Appendix E.3 for details.)

6.1 Experimental setup
We ran experiments in all three classes of symmetric GAMUT

games: RandomGame, CoordinationGame, and CollaborationGame.

Intuitively, a RandomGame draws all payoffs uniformly at random,

whereas in a CoordinationGame and a CollaborationGame, the high-

est payoffs are always for outcomes where all players choose the

same action. (See Appendix E.1 details.) Because CoordinationGame

and CollaborationGame have such similar game structures, our ex-

perimental results in the two games are nearly identical. To avoid

redundancy, we only include experimental results for Coordina-

tionGame in this paper.

For each game class, we sweep the parameters of the game from

2 to 5 players and 2 to 5 actions, i.e., with ( |𝑁 |, |𝐴𝑖 |) ∈ {2, 3, 4, 5} ×
{2, 3, 4, 5}. We sample 100 games at each parameter setting and

then attempt to calculate the global symmetric optimum using

(i) 10 runs of SLSQP and (ii) 10 runs of the replicator dynamic

(each with a different initialization drawn uniformly at random

over the simplex), resulting in 10 + 10 = 20 solution attempts per

game. Because we do not have ground truth for the globally optimal

solution of the game, we instead use the best of our 20 solution

attempts, which we call the “best solution.”

To apply our previously developed theory to GAMUT games,

we observe that RandomGames, CoordinationGames, and Collab-

orationGames are (almost surely) non-degenerate in the sense of

Definition 5.4:

Proposition 6.1. Drawing a degenerate game is a measure-zero
event in RandomGames, CoordinationGames, and CollaborationGames.



6.2 What fraction of symmetric optima are
local optima in possibly-asymmetric
strategy space?

Here, we try to get a sense for how often symmetric optima are

stable in the sense that they are also local optima in possibly-

asymmetric strategy space (see Section 5). In Appendix Table 3b,

we show in what fraction of games the best solution of our 20 opti-

mization attempts is mixed; by Theorem 5.5, this is the fraction of

games whose symmetric optima are not local optima in possibly-

asymmetric strategy space. In CoordinationGames, the symmetric

optimum is always (by construction) for all players to choose the

same action, leading to stability. By contrast, we see that 36% to

60% of RandomGames are unstable. We conclude that if real-world

games do not have the special structure of CoordinationGames,

then instability may be common.

6.3 How often do SLSQP and the replicator
dynamic find an optimal solution?

As sequential least squares programming and the replicator dy-

namic are not guaranteed to converge to a global optimum, we test

empirically how often each run converges to the best solution of

our 20 optimization runs. In Appendix Table 4 / Table 6, we show

what fraction of the time any single SLSQP / replicator dynamics

run finds the best solution, and in Appendix Table 5 / Table 7, we

show what fraction of the time at least 1 of 10 SLSQP / replicator

dynamics runs finds the best solution. First, we note that the tables

for SLSQP and the replicator dynamics are quite similar, differing by

no more than a few percentage points in all cases. So the replicator

dynamics, which are used as a model for how populations evolve

strategies, can also be used as an effective optimization algorithm.

Second, we see that individual runs of each algorithm are up to

93% likely to find the best solution in small RandomGames, but

they are less likely (as little as 24% likely) to find the best solution

in larger RandomGames and in CoordinationGames. The best of

10 runs, however, finds the best solution ≥ 87% of the time, indi-

cating that random algorithm restarts benefit symmetric strategy

optimization.

7 COMPUTATIONAL COMPLEXITY OF
COMPUTING GAME SYMMETRIES AND
SYMMETRIC STRATEGIES

7.1 Finding symmetries
In some cases, domain knowledge can provide the symmetries of

a game. For example, in the laundry game of Table 1b, symmetry

arises from a simple observation: it matters only what chores get
done, not which children do the chores. In other cases, however,

players may face a potentially symmetric common-payoff game

and first have to determine what the symmetries of the game are,

e.g., by computing a generating set of the group of symmetries.

Call this problem the game automorphism (GA) problem. Can it be

solved efficiently?

The complexity of the GA problem depends on how the game

is represented. The simplest representation is to give the full table

of payoffs. However, the size is then exponential in the number of

players. A simple alternative is to only explicitly represent non-zero

entries in the payoff table. This way, some games of many players

can be represented succinctly. Calling the latter a sparse represen-
tation and the former a non-sparse representation, we obtain the

following:

Theorem 7.1. On a non-sparse game representation, the GA prob-
lem can be solved in polynomial time. On a sparse representation, the
GA problem is polynomial-time equivalent to the graph isomorphism
problem.

For a general introduction to the graph isomorphism problem,

see Grohe and Schweitzer [11]. Notably, the problem is in NP but

neither known to be solvable in polynomial time nor known to be

NP-hard.

7.2 Finding an optimal symmetric strategy
profile

Once it is known what the symmetries P of a given game are, what

is the complexity of finding an optimal P-invariant strategy profile?

InAppendix G.2, we show that the problem of optimizing symmetric

strategies is equivalent to the problem of optimizing polynomials

on Cartesian products of unit simplices. However, depending on

how the polynomials and games are represented, the reductions

may increase the problem instance exponentially. Nevertheless, we

can import results from the literature on optimizing polynomials

to obtain results such as the following:

Theorem 7.2. Deciding for a given game G with symmetries P
and a given number 𝐾 whether there is a P-invariant profile with
expected utility at least 𝐾 is NP-hard, even for 2-player symmetric
games.

8 CONCLUSION
When ML is deployed in the world, it is natural to instantiate multi-

ple agents from the same template. This naturally restricts strategy

profiles to symmetric ones, and it puts the focus on finding optimal

symmetric strategy profiles. This, in turn, raises questions about the

properties of such profiles. Would individual agents (or the users

they serve) want to deviate from these profiles? Are they robust

to small changes in the game or in the executed strategies? Could

there be better asymmetric strategy profiles nearby?

Our results yield a mix of good and bad news. Theorems 3.2 and

4.3 are good news, showing that even local optima in symmetric

strategy space are (global) Nash equilibria in a robust sense. So,

with respect to unilateral deviations among team members, sym-

metric optima are relatively stable strategies. On the other hand,

Theorem 5.5 is perhaps bad news, because it shows that a broad

class of symmetric local optima are unstable when considering joint
deviations in asymmetric strategy space (Section 5). Furthermore,

our empirical results with learning algorithms in GAMUT suggest

that these unstable solutions may not be uncommon in practice

(Section 6.2).
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A PROOFS OF SECTION 3 RESULTS
Theorem 3.2. Let G be a common-payoff normal-form game, and

let P ⊆ Γ(G) be a subset of the game symmetries Γ(G). Any locally
optimal P-invariant strategy profile is a Nash equilibrium.

Proof. We proceed by contradiction. Suppose 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛)
is locally optimal among P-invariant strategy profiles that is not a

Nash equilibrium. We will construct an 𝑠 ′ arbitrarily close to 𝑠 with
𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠).

Without loss of generality, suppose 𝑠1 is not a best response to

𝑠−1 but that the pure strategy of always playing 𝑎1 is a best response
to 𝑠−1. For an arbitrary probability 𝑝 > 0, consider the modified

strategy 𝑠 ′
1
that plays action 𝑎1 with probability 𝑝 and follows 𝑠1

with probability 1−𝑝 . Now, construct 𝑠 ′ = (𝑠 ′
1
, 𝑠 ′
2
, . . . , 𝑠 ′𝑛) as follows:

𝑠 ′𝑖 =

{
𝑠 ′
𝑖
= 𝑠 ′

1
if 𝑖 ∈ P(1)

𝑠 ′
𝑖
= 𝑠𝑖 otherwise.

In words, 𝑠 ′ modifies 𝑠 by having the members of player 1’s orbit

mix in a probability 𝑝 of playing 𝑎1. We claim for all sufficiently

small 𝑝 that 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠).
To establish this claim, we break up the expected utility of 𝑠 ′

according to cases of how many players in 1’s orbit play the action

𝑎1 because of mixing in 𝑎1 with probability 𝑝 . In particular, we

observe

𝐸𝑈 (𝑠 ′) = 𝐵(𝑚=0, 𝑝)𝐸𝑈 (𝑠)
+ 𝐵(𝑚=1, 𝑝)𝐸𝑈 ((𝑠 ′

1
, 𝑠2, . . . , 𝑠𝑛))

+ 𝐵(𝑚>1, 𝑝)𝐸𝑈 (. . .),

where 𝐵(𝑚, 𝑝) is the probability of𝑚 successes for a binomial ran-

dom variable on 𝑚 independent events that each have success

probability 𝑝 and where 𝐸𝑈 (. . .) is arbitrary. Note that the crucial
step in writing this expression is grouping the terms with the coef-

ficient 𝐵(𝑚=1, 𝑝). We can do this because for any player 𝑗 ∈ P(1),
there exists a symmetry 𝜌 ∈ Γ(G) with 𝜌 ( 𝑗) = 1.

Now, to achieve 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠), we require

𝐸𝑈 (𝑠) < 𝐵(𝑚 = 1, 𝑝)
𝐵(𝑚 > 0, 𝑝) 𝐸𝑈 ((𝑠 ′

1
, 𝑠2, . . . , 𝑠𝑛))

+ 𝐵(𝑚 > 1, 𝑝)
𝐵(𝑚 > 0, 𝑝) 𝐸𝑈 (...) .

We know 𝐸𝑈 ((𝑠 ′
1
, 𝑠2, ..., 𝑠𝑛)) > 𝐸𝑈 (𝑠), but we must deal with the

case when 𝐸𝑈 (...) is arbitrarily negative. Because lim𝑝→0 𝐵(𝑚 >

1, 𝑝)/𝐵(𝑚 = 1, 𝑝) = 0, by making 𝑝 sufficiently small, 𝐵(𝑚 =

1, 𝑝)/𝐵(𝑚 > 0, 𝑝) can be made greater than 𝐵(𝑚 > 1, 𝑝)/𝐵(𝑚 >

0, 𝑝) by an arbitrarily large ratio. The result follows. □

B OPTIMAL SYMMETRIC POLICY FOR THE
RADIO STATION GAME OF EXAMPLE 3.3

We here calculate the optimal Γ(G)-invariant strategy profile for

Example 3.3. Let 𝑝 be the probability of broadcasting the weather

forecasts. By symmetry of the game and linearity of expectation,

the expected utility given 𝑝 is simply four times the expected utility

of any individual neighborhood. The value of an individual neigh-

borhood is 0 with probability (1 − 𝑝)3, is 1 with probability 𝑝3 and

is 2 with the remaining probability. Hence, the expected utility of a

single neighborhood is

𝑝3 + (1 − (1 − 𝑝)3 − 𝑝3) · 2 = 2 − 2(1 − 𝑝)3 − 𝑝3 .

The maximum of this term (and thus the maximum of the overall

utility of all neighborhoods) can be found by any computer algebra

system to be 𝑝 = 2 −
√
2, which gives an expected utility of 4(

√
2 −

1) ≈ 1.66.

To double-check, we can also calculate the symmetric Nash equi-

librium of this game. It’s easy to see that that Nash equilibrium

must be mixed and therefore must make each player (radio station)

indifferent about what to broadcast. So let 𝑝 again be the probability

with which everyone else broadcasts the weather. The expected

utility of broadcasting the weather relative to broadcasting nothing

for any of the three relevant neighborhoods is 2(1−𝑝)2. (Broadcast-
ing the weather lifts the utility of a neighborhood from 0 to 2 if they

do not already get the weather. Otherwise, it is useless to air the

weather.) The expected utility of broadcasting music again relative

to broadcasting nothing is simply 𝑝2. We can find the symmetric

Nash equilibrium by setting

2(1 − 𝑝)2 = 𝑝2,

which gives us the same solution for 𝑝 as before.

C PROOFS OF SECTION 4 RESULTS
Proposition 4.2. Let G be a common-payoff normal-form game,

and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetriesP ⊆ Γ(G). Suppose𝐺 ′ is an 𝜖-perturbation
of G. Then 𝑠∗ is a 2𝜖-Nash equilibrium in G′.

Proof. By Theorem 3.2, 𝑠∗ is a Nash equilibrium in G. After
perturbing G by 𝜖 to form G′

, payoffs have increased / decreased

at most ±𝜖 , so the difference between any two actions’ expected

payoffs has changed by at most 2𝜖 . □

Theorem 4.3. Let G be a common-payoff normal-form game,
and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetries P ⊆ Γ(G). Suppose 𝑠 is a strategy profile
with total variation distance 𝑇𝑉 (𝑠, 𝑠∗) ≤ 𝛿 . Then 𝑠 is an 𝜖-Nash
equilibrium with 𝜖 = 4𝛿 max𝑖∈𝑁,𝑎∈𝐴 |𝑢𝑖 (𝑎) |.

Proof. Consider the perspective of an arbitrary player 𝑖 . The

difference in expected utility of playing any action 𝑎𝑖 between the

opponent strategy profiles 𝑠−𝑖 and 𝑠∗−𝑖 is given by:��𝐸𝑈𝑖 (𝑎𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠∗−𝑖 )��
=

������ ∑
𝑎−𝑖 ∈𝐴−𝑖

𝑠−𝑖 (𝑎−𝑖 )𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )

−
∑

𝑎−𝑖 ∈𝐴−𝑖

𝑠∗−𝑖 (𝑎−𝑖 )𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )

������
≤

∑
𝑎−𝑖 ∈𝐴−𝑖

|𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ) |
��𝑠−𝑖 (𝑎−𝑖 ) − 𝑠∗−𝑖 (𝑎−𝑖 )��

≤ 2𝑇𝑉 (𝑠, 𝑠∗) max

𝑖∈𝑁,𝑎∈𝐴
|𝑢𝑖 (𝑎) |

≤ 2𝛿 max

𝑖∈𝑁,𝑎∈𝐴
|𝑢𝑖 (𝑎) |.



In particular, let 𝑎𝑖 be an action in the support of 𝑠∗
𝑖
, and let 𝑎′

𝑖
be any other action. Then, using the above, we have:

𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠−𝑖 )
= 𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎

′
𝑖 , 𝑠

∗
−𝑖 ) + 𝐸𝑈𝑖 (𝑎

′
𝑖 , 𝑠

∗
−𝑖 )

− 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠∗−𝑖 ) + 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠
∗
−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠−𝑖 )

≤ 𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎
′
𝑖 , 𝑠

∗
−𝑖 )

+ 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠∗−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠−𝑖 )
≤

��𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠∗−𝑖 )��
+

��𝐸𝑈𝑖 (𝑎𝑖 , 𝑠−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠∗−𝑖 )��
≤ 4𝛿 max

𝑖∈𝑁,𝑎∈𝐴
|𝑢𝑖 (𝑎) |,

where 𝐸𝑈𝑖 (𝑎′𝑖 , 𝑠
∗
−𝑖 ) − 𝐸𝑈𝑖 (𝑎𝑖 , 𝑠

∗
−𝑖 ) ≤ 0 because 𝑠∗

𝑖
is a Nash equilib-

rium by Theorem 3.2. □

Corollary 4.4. Let G be a common-payoff normal-form game,
and let 𝑠∗ be a locally-optimal P-invariant strategy profile for some
subset of game symmetries P ⊆ Γ(G). Suppose 𝑠 is a strategy
profile with Kullback-Leibler divergence satisfying 𝐷𝐾𝐿 (𝑠 | |𝑠∗) ≤
𝜈 or 𝐷𝐾𝐿 (𝑠∗ | |𝑠) ≤ 𝜈 . Then 𝑠 is an 𝜖-Nash equilibrium with 𝜖 =

2

√
2𝜈 max𝑖∈𝑁,𝑎∈𝐴 |𝑢𝑖 (𝑎) |.

Proof. By Pinsker’s inequality [35], we have

𝑇𝑉 (𝑠, 𝑠∗) ≤
√

1

2

𝐷𝐾𝐿 (𝑠 | |𝑠∗).

As𝑇𝑉 (𝑠, 𝑠∗) = 𝑇𝑉 (𝑠∗, 𝑠) and with a similar application of Pinsker’s

inequality, we have by assumption that𝑇𝑉 (𝑠, 𝑠∗) ≤
√
𝜈/2. Applying

Theorem 4.3 with 𝛿 =
√
𝜈/2 yields the result. □

D PROOFS OF SECTION 5 RESULTS
Theorem 5.5. Let G be a non-degenerate common-payoff normal-

form game, and let P ⊆ Γ(G) be a subset of the game symmetries
Γ(G). A locally optimal P-invariant strategy profile is locally opti-
mal among possibly-asymmetric strategy profiles if and only if it is
deterministic.

Proof. Let 𝑠 be a locally optimal P-invariant strategy profile. By

Theorem 3.2, 𝑠 is a Nash equilibrium. Because G is non-degenerate,

so is 𝑠 . We prove the claim by proving that (1) if 𝑠 is deterministic, it

is locally optimal in asymmetric strategy space; and (2) if 𝑠 is mixed

then it is not locally optimal in asymmetric strategy space.

(1) The deterministic case: Let 𝑠 be deterministic. Now consider

a potentially asymmetric strategy profile 𝑠 ′. We must show as 𝑠 ′

becomes sufficiently close to 𝑠 that 𝐸𝑈 (𝑠 ′) ≤ 𝐸𝑈 (𝑠).
Let 𝜖1, 𝜖2, ..., 𝜖𝑛 and 𝑠1, ..., 𝑠𝑛 be such that for 𝑖 ∈ 𝑁 , 𝑠 ′

𝑖
can be

interpreted as following 𝑠𝑖 with probability 1 − 𝜖𝑖 and following 𝑠𝑖
with probability 𝜖𝑖 , where 𝑠𝑖 ∉ supp(𝑠𝑖 ). Then (similar to the proof

of Theorem 3.2), we can write

𝐸𝑈 (𝑠 ′)

=

(∏
𝑖∈𝑁

(1 − 𝜖𝑖 )
)
𝐸𝑈 (𝑠)

+
∑
𝑗 ∈𝑁

𝜖 𝑗
©«

∏
𝑖∈𝑁−{ 𝑗 }

1 − 𝜖𝑖
ª®¬ · 𝐸𝑈 (𝑠 𝑗 , 𝑠−𝑗 )

+
∑

𝑗,𝑙 ∈𝑁 :𝑗≠𝑙

𝜖 𝑗𝜖𝑖
©«

∏
𝑖∈𝑁−{ 𝑗,𝑙 }

1 − 𝜖𝑖
ª®¬ · 𝐸𝑈 (𝑠 𝑗 , 𝑠𝑙 , 𝑠−𝑗−𝑙 )

+ ...

The second line is the expected value if everyone plays 𝑠 , the third

line is the sum over the possibilities of one player 𝑗 deviating to

𝑠 𝑗 , and so forth. We now make two observations. First, because

𝑠 is a Nash equilibrium, the expected utilities 𝐸𝑈 (𝑠 𝑗 , 𝑠−𝑗 ) in the

third line are all at most as big as 𝐸𝑈 (𝑠). Now consider any later

term corresponding to the deviation of some set 𝐶 , containing at

least two players 𝑖, 𝑗 . Note that it may be 𝐸𝑈 (𝑠𝐶 , 𝑠−𝐶 ) > 𝐸𝑈 (𝑠).
However, this term is multiplied by 𝜖𝑖𝜖 𝑗 . Thus, as the 𝜖 go to 0, the

significance of this term in the average vanishes in comparison

to that of both the terms corresponding to the deviation of just 𝑖

and just 𝑗 , which are multiplied only by 𝜖𝑖 and 𝜖 𝑗 , respectively. By

non-degeneracy, it is 𝐸𝑈 (𝑠𝑖 , 𝑠−𝑖 ) < 𝐸𝑈 (𝑠) or 𝐸𝑈 (𝑠 𝑗 , 𝑠−𝑗 ) < 𝐸𝑈 (𝑠).
Thus, if the 𝜖𝑖 are small enough, the overall sum is less than 𝐸𝑈 (𝑠).

(2) The mixed case: Let 𝑠 be mixed. We proceed by constructing a

strategy profile 𝑠 ′ that is arbitrarily close to 𝑠 with 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠).
Let𝑚 be the largest integerwhere for all subsets of players𝐶 ⊆ 𝑁

with |𝐶 | ≤ 𝑚, the expected payoff is constant across all joint devia-

tions to 𝑎𝑖 ∈ supp(𝑠𝑖 ) for all 𝑖 ∈ 𝐶 , i.e., where 𝐸𝑈 (𝑎𝐶 , 𝑠−𝐶 ) = 𝐸𝑈 (𝑠)
for all 𝑎𝐶 ∈ supp(𝑠𝐶 ). As 𝑠 is a non-degenerate Nash equilibrium,

1 ≤ 𝑚 < 𝑛.

By definition of𝑚, there exists a subset of players 𝐶 ⊂ 𝑁 with

|𝐶 | =𝑚 and choice of actions𝑎𝐶 ∈ supp(𝑠𝐶 )where𝐸𝑈 (𝑎 𝑗 , 𝑎𝐶 , 𝑠−𝑗−𝐶 )
is not constant across the available actions 𝑎 𝑗 ∈ 𝐴 𝑗 for some player

𝑗 ∈ 𝑁 −𝐶 . Denote player 𝑗 ’s best response to the joint deviation 𝑎𝐶
as 𝑎∗

𝑗
∈ argmax𝑎 𝑗

𝐸𝑈 (𝑎 𝑗 , 𝑎𝐶 , 𝑠−𝑗−𝐶 ), and note 𝐸𝑈 (𝑎 𝑗 , 𝑎𝐶 , 𝑠−𝑗−𝐶 ) >
𝐸𝑈 (𝑎𝐶 , 𝑠−𝐶 ) = 𝐸𝑈 (𝑠).

To construct 𝑠 ′, modify 𝑠 by letting player 𝑗 mix according to

𝑠 𝑗 with probability (1 − 𝜖) and play action 𝑎 𝑗 with probability 𝜖 .

Similarly, let each player 𝑖 ∈ 𝐶 mix according to 𝑠𝑖 with probability

(1 − 𝜖) and play their action 𝑎𝑖 specified by 𝑎𝐶 with probability 𝜖 .

Because we allow 𝜖 > 0 to be arbitrarily small, all we have left to

show is 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠).
Observe as before that we can break 𝐸𝑈 (𝑠 ′) up into cases based

on the number of players who deviate according to the modified



Player 2

𝛼 𝛽

Player 1

𝛼 𝑢𝛼𝛼 𝑢𝛼𝛽

𝛽 𝑢𝛼𝛽 𝑢𝛽𝛽

Table 2: A payoff matrix with |𝑁 | = 2 and 𝐴1 = 𝐴2 = {𝛼, 𝛽}
to illustrate GAMUT games. In a RandomGame, 𝑢𝛼𝛼 , 𝑢𝛼𝛽 ,
and 𝑢𝛽𝛽 are i.i.d. draws from Unif (−100, 100). In a Coordi-
nationGame, 𝑢𝛼𝛼 and 𝑢𝛽𝛽 are i.i.d. draws from Unif (0, 100)
while 𝑢𝛼𝛽 is a draw from Unif (−100, 0). In a Collabora-
tionGame, 𝑢𝛼𝛼 = 𝑢𝛽𝛽 = 100, and 𝑢𝛼𝛽 is a draw from
Unif (−100, 99).

probability 𝜖 :

𝐸𝑈 (𝑠 ′)

=
©«

∏
𝑘∈𝐶∪{ 𝑗 }

(1 − 𝜖)ª®¬𝐸𝑈 (𝑠)

+
∑

𝑙 ∈𝐶∪{ 𝑗 }
𝜖
©«

∏
𝑘∈𝐶∪{ 𝑗 }:𝑘≠𝑙

1 − 𝜖ª®¬𝐸𝑈 (𝑎𝑙 , 𝑠−𝑙 )

+ ...

+ ©«
∏

𝑘∈𝐶∪{ 𝑗 }
𝜖
ª®¬𝐸𝑈 (𝑎 𝑗 , 𝑎𝐶 , 𝑠−𝑗−𝐶 ) .

By construction, every value in the expected value calculation

𝐸𝑈 (𝑠 ′) is equal to 𝐸𝑈 (𝑠) except for the last value 𝐸𝑈 (𝑎 𝑗 , 𝑎𝐶 , 𝑠−𝑗−𝐶 ),
which is greater than 𝐸𝑈 (𝑠). We conclude 𝐸𝑈 (𝑠 ′) > 𝐸𝑈 (𝑠). □

E GAMUT DETAILS AND ADDITIONAL
EXPERIMENTS

E.1 GAMUT games
In Section 6.1, we analyzed all three classes of symmetric GAMUT

games: RandomGame, CoordinationGame, and CollaborationGame.

Below, we give a formal definiton of these game classes:

Definition E.1. A RandomGame with |𝑁 | players and |𝐴| actions
assumes𝐴𝑖 = 𝐴 𝑗 for all 𝑖, 𝑗 and draws a payoff fromUnif (−100, 100)
for each unordered action profile 𝑎 ∈ 𝐴.

Definition E.2. A CoordinationGame with |𝑁 | players and |𝐴|
actions assumes 𝐴𝑖 = 𝐴 𝑗 for all 𝑖, 𝑗 . For each unordered action

profile 𝑎 ∈ 𝐴 with 𝑎𝑖 = 𝑎 𝑗 for all 𝑖, 𝑗 , it draws a payoff from

Unif (0, 100); for all other unordered action profiles, it draws a

payoff from Unif (−100, 0).

Definition E.3. A CollaborationGame with |𝑁 | players and |𝐴|
actions assumes 𝐴𝑖 = 𝐴 𝑗 for all 𝑖, 𝑗 . For each unordered action

profile 𝑎 ∈ 𝐴 with 𝑎𝑖 = 𝑎 𝑗 for all 𝑖, 𝑗 , the payoff is 100; for all other

unordered action profiles, it draws a payoff from Unif (−100, 99).

Note that these games define payoffs for each unordered action

profile because the games are totally symmetric (Definition 2.3).

Table 2 gives illustrative examples.

Figure 2: The magnitude of the replicator dynamics update
step averaged over 10,000RandomGames4with 2 players and
2 actions. Although this plot indicates that the replicator dy-
namics converge by 100 iterations, we ran 10,000 iterations
for good measure in all of our experiments.

E.2 Proof of Proposition 6.1
Proof. By Definition 5.4, in order for a game to be degenerate,

there must exist a player 𝑖 , a set of actions for the other players

𝑎−𝑖 , and a pair of actions 𝑎𝑖 ≠ 𝑎′
𝑖
with 𝐸𝑈 (𝑎𝑖 , 𝑎−𝑖 ) = 𝐸𝑈 (𝑎′

𝑖
, 𝑎−𝑖 ).

In RandomGames, CoordinationGames, and CollaborationGames,

𝐸𝑈 (𝑎𝑖 , 𝑎−𝑖 ) = 𝜇 (𝑎𝑖 , 𝑎−𝑖 ) and 𝐸𝑈 (𝑎′
𝑖
, 𝑎−𝑖 ) = 𝜇 (𝑎′

𝑖
, 𝑎−𝑖 ) are continu-

ous random variables that are independent of each other. (Or, in

the case of a CollaborationGame, 𝜇 (𝑎𝑖 , 𝑎−𝑖 ) may be a fixed value

outside of the support of 𝜇 (𝑎′
𝑖
, 𝑎−𝑖 ).) So 𝐸𝑈 (𝑎𝑖 , 𝑎−𝑖 ) = 𝐸𝑈 (𝑎′

𝑖
, 𝑎−𝑖 )

is a measure-zero event. □

E.3 Replicator dynamics
Consider a game where all players share the same action set, i.e.,

with 𝐴𝑖 = 𝐴 𝑗 for all 𝑖, 𝑗 , and consider a totally symmetric strategy

profile 𝑠 = (𝑠1, 𝑠1, . . . , 𝑠1). In the replicator dynamic, each action

can be viewed as a species, and 𝑠1 defines the distribution of each

individual species (action) in the overall population (of actions).

At each iteration of the replicator dynamic, the prevalence of an

individual species (action) grows in proportion to its relative fitness

in the overall population (of actions). In particular, the replicator

dynamic evolves 𝑠1 (𝑎) over time 𝑡 for each 𝑎 ∈ 𝐴1 as follows:

𝑑

𝑑𝑡
𝑠1 (𝑎) = 𝑠1 (𝑎) [𝐸𝑈 (𝑎, 𝑠−1) − 𝐸𝑈 (𝑠)] .

To simulate the replicator dynamic with Euler’s method, we need to

choose a stepsize and a total number of iterations. Experimentally,

we found the fastest convergence with a stepsize of 1, and we found

that 100 iterations sufficed for convergence; see Figure 2. For good

measure, we ran 10,000 iterations of the replicator dynamic in all

of our experiments.

4
In this simulation only we rescaled the RandomGames so that each payoff is a draw

from Unif (0, 1) .



We are interested in the replicator dynamic for two reasons.

First, it is a model for how agents in the real world may collectively

arrive at a symmetric solution to a game (e.g., through evolutionary

pressure). Second, it is a learning algorithm that performs local

search in the space of symmetric strategies. In our experiments of

Appendix E.5, we find that using the replicator dynamic as an opti-

mization algorithm is competitive with Sequential Least SQuares

Programming (SLSQP), a local search method from the constrained

optimization literature [17, 40].

E.4 What fraction of symmetric optima are
local optima in possibly-asymmetric
strategy space?

As discussed in Section 6.2, we would like to get a sense for how

often symmetric optima are stable in the sense that they are also

local optima in possibly-asymmetric strategy space (see Section 5).

Table 3 shows in what fraction of games the best solution we found

is unstable.

E.5 How often do SLSQP and the replicator
dynamic find an optimal solution?

As discussed in Section 6.3, Table 4 and Table 5 show how often

SLSQP finds an optimal solution, while Table 6 and Table 7 show

how often the replicator dynamic finds an optimal solution.

E.6 How costly is payoff perturbation under
the simultaneous best response dynamic?

When a game is not stable in the sense of Section 5, we would like to

understand how costly the worst-case 𝜖-perturbation of the game

can be. (See Definition 4.1 for the definition of an 𝜖-perturbation of

a game.) In particular, we study the case when individuals simul-

taneously update their strategies in possibly-asymmetric ways by

defining the following simultaneous best response dynamic:

Definition E.4. The simultaneous best response dynamic at 𝑠 up-
dates from strategy profile 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) to strategy profile

𝑠 ′ = (𝑠 ′
1
, 𝑠 ′
2
, . . . , 𝑠 ′𝑛) with every 𝑠 ′

𝑖
a best response to 𝑠−𝑖 .

For each of the RandomGames in Section 6.2 whose symmetric

optimum 𝑠 is not a local optimum in possibly-asymmetric strat-

egy space, we compute the worst-case 𝜖 payoff perturbation for

infinitesimal 𝜖 . Then, we update each player’s strategy according

to the simultaneous best response dynamic at 𝑠 . This necessarily

leads to a decrease in the original common payoff because the play-

ers take simultaneous updates on an objective that, after payoff

perturbation, is no longer common. Table 8 reports the average

percentage decrease in expected utility, which ranges from 55% to

89%. Our results indicate that simultaneous best responses after

payoff perturbation in RandomGames can be quite costly.

F THE COMPUTATIONAL COMPLEXITY OF
FINDING THE SYMMETRIES OF A GAME

In this section, we analyze the computational complexity of finding

the symmetries of a common-payoff game. In general, symmetries

as defined in Definition 2.1 can be found in exponential time in the

number of players. Therefore, if we represent the game explicitly

as a full payoff matrix, then the symmetries can be found in poly-

nomial time in the size of the input. However, if we can represent

the game more efficiently by giving only non-zero entries of the

payoff matrix, the problem becomes graph isomorphism-complete,

i.e., polynomial-time equivalent to the graph isomorphism prob-

lem, which is neither known to be solvable in polynomial time

nor known to be NP-hard [see 11, for an overview]. We also show

(in Section F.3) that if we consider a more general notion of game

symmetry that permutes actions in addition to players, the com-

putational problem becomes graph isomorphism-complete on an

explicit payoff matrix representation.

F.1 The hypergraph automorphism problem
We here introduce the hypergraph automorphism problem and

some existing results about it. In the next section, we will prove

our results by relating the game automorphism problem (i.e., the

problem of finding the symmetries of a game) to the hypergraph

automorphism problem.

A hypergraph is a pair (𝑉 , 𝐸), where 𝑉 is a (finite) set of vertices

and 𝐸 ⊆ 2
𝑉
is a set of hyperedges.

A symmetry or automorphism of a hypergraph is a bijection

𝜌 : 𝑉 → 𝑉 s.t. for each set of vertices 𝑒 ⊆ 𝑉 , it is 𝑒 ∈ 𝐸 if and

only if 𝜌 (𝑒) ∈ 𝐸, where 𝜌 (𝑒) B {𝜌 (𝑣) | 𝑣 ∈ 𝑒}. In other words:

For 𝜌 to be a symmetry it must be the case that any set of vertices

𝑣1, ..., 𝑣𝑘 are connected by a hyperedge if and only if 𝜌 (𝑣1), ..., 𝜌 (𝑣𝑘 )
are connected by a hyperedge.

Definition F.1. The hypergraph automorphism (HA) problem asks

for a given hypergraph (𝑉 , 𝐸) to provide a set of symmetries of

(𝑉 , 𝐸) that generate the group of all symmetries of (𝑉 , 𝐸).

There are two natural ways to represent the edges of a hyper-

graph. The first is to provide what one would call an adjacency

matrix in the case of a regular graph. That is, we give a table of bits

that specifies for each 𝑒 ∈ 2
𝑉
whether 𝑒 ∈ 𝐸. That is, for each set of

vertices, we specify whether there is a hyperedge connecting that

set of vertices. The downside of this representation style is that it

always costs 𝑂 (2 |𝑉 |) bits. An alternative is to explicitly list 𝐸, such

that graphs with few edges can be represented in much less space

than 𝑂 (2 |𝑉 |). We call the former notation non-sparse and the latter

sparse.

Lemma F.2. The HA problem on a sparse hypergraph representa-
tion is graph isomorphism-complete.

Proof. Mathon [21] shows that the problem of giving the gen-

erators of the automorphism group of a given graph isomorphism

complete. So it is left to show that the automorphism problem on

sparse hypergraphs is polynomially equivalent to analogous prob-

lem on graphs. Since graphs are hypergraphs, we only need to

reduce HA to the graph automorphism problem. This is easy and

the main idea has been noted before, e.g., see the introduction of

Arvind et al. [1]. □

Theorem F.3 (Luks, 1999, Theorem 4.2). The HA problem is solv-
able in 𝑂 (𝑐 |𝑉 |) for some constant 𝑐 . In particular, it follows immedi-
ately that HA on non-sparse representations is solvable in polynomial
time.



A 2 3 4 5

N

2 0.36 0.44 0.44 0.50

3 0.38 0.49 0.59 0.60

4 0.42 0.45 0.46 0.46

5 0.45 0.48 0.49 0.47

(a) RandomGame

A 2 3 4 5

N

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

(b) Coordina-
tionGame

Table 3: The fraction of games whose symmetric optima are mixed. By Theorem 5.5, these symmetric equilibria are the ones
unstable in the sense of Section 5. Numbers in the table were empirically determined from 100 randomly sampled games per
GAMUT class.

A 2 3 4 5

N

2 0.92 0.81 0.70 0.64

3 0.80 0.69 0.57 0.48

4 0.75 0.57 0.40 0.35

5 0.70 0.45 0.36 0.31

(a) RandomGame

A 2 3 4 5

N

2 0.59 0.50 0.40 0.33

3 0.53 0.38 0.28 0.29

4 0.53 0.37 0.29 0.26

5 0.53 0.36 0.33 0.25

(b) CoordinationGame
Table 4: The fraction of single SLSQP runs that achieve the best solution found in our 20 total optimization attempts. Numbers
in the table were empirically determined from 100 randomly sampled games per GAMUT class.

A 2 3 4 5

N

2 1.00 0.99 0.99 0.98

3 1.00 0.99 1.00 0.96

4 1.00 0.96 0.94 0.88

5 0.98 0.90 0.88 0.91

(a) RandomGame

A 2 3 4 5

N

2 0.99 1.00 0.98 0.97

3 1.00 0.99 0.93 0.95

4 1.00 0.97 0.97 0.93

5 0.99 1.00 0.95 0.92

(b) CoordinationGame
Table 5: The fraction of games inwhich at least 1 of 10 SLSQP runs achieves the best solution found in our 20 total optimization
attempts. Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT class.

A 2 3 4 5

N

2 0.93 0.81 0.68 0.65

3 0.81 0.70 0.58 0.46

4 0.76 0.58 0.36 0.34

5 0.69 0.43 0.36 0.30

(a) RandomGame

A 2 3 4 5

N

2 0.58 0.45 0.40 0.33

3 0.57 0.35 0.29 0.27

4 0.53 0.37 0.28 0.25

5 0.51 0.33 0.33 0.24

(b) CoordinationGame
Table 6: The fraction of single replicator dynamics runs that achieve the best solution found in our 20 total optimization
attempts. Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT class.

This is harder to show. Note that a brute force method that tests

all |𝑉 |! bijections is super-exponential in |𝑉 | and super-polynomial

in (the problem size) 2
|𝑉 |

.



A 2 3 4 5

N

2 1.00 1.00 1.00 1.00

3 0.99 1.00 0.95 0.96

4 1.00 0.98 0.91 0.91

5 0.98 0.97 0.92 0.87

(a) RandomGame

A 2 3 4 5

N

2 1.00 1.00 0.99 0.94

3 1.00 0.97 0.93 0.96

4 0.99 1.00 0.93 0.92

5 1.00 0.98 0.96 0.90

(b) CoordinationGame
Table 7: The fraction games in which at least 1 of 10 replicator dynamics runs achieves the best solution found in our 20 total
optimization attempts. Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT
class.

A 2 3 4 5

N

2 58.9% 55.9% 61.8% 64.6%

3 73.7% 70.9% 73.4% 73.7%

4 74.1% 77.4% 78.4% 82.5%

5 77.4% 84.9% 89.9% 87.5%

(a) RandomGame
Table 8: The average decrease in expected utility that worst-case infinitesimal asymmetric payoff perturbations cause to un-
stable symmetric optima. To get these numbers, we first perturb payoffs in the 100 RandomGames from Section 6.2 whose
symmetric optima 𝑠 are not local optima in possibly-asymmetric strategy space. Then, in each perturbed game, we compute a
simultaneous best-response update to 𝑠 and record its decrease in expected utility.

F.2 Polynomial-time equivalence
Recall from the main text that – for the purpose of our paper – a

symmetry of an 𝑛-player (common-payoff) game (𝐴,𝑢) is a per-

mutation 𝜌 : {1, ..., 𝑛} → {1, ..., 𝑛} s.t. for all pure strategy profiles

a ∈ 𝐴, it is 𝑢 (𝑎1, ..., 𝑎𝑛) = 𝑢 (𝑎𝜌 (1) , ..., 𝑎𝜌 (𝑛) ). In particular, we do

not consider permutations of the actions.

Definition F.4. The (common-payoff) game automorphism (GA)
problem asks us to compute for a common-payoff given game a

generating set of the symmetries of the game.

As with hypergraphs, we distinguish two representations for a

game. A sparse representation lists only non-zero payoffs. A non-

sparse representation gives the payoff for each 𝐴. As before, the

downside of the full payoff table representation is that its size is

exponential in the number of players.

Theorem F.5. The sparse/non-sparse representation HA problem
is polynomial-time equivalent to the sparse/non-sparse representation
GA problem.

By polynomial-time, we here mean in time bound by a poly-

nomial in the number of players and the size in bits of the given

instance.

Proof. HA→GA: We first reduce the HA problem to the GA

problem, which is the easier direction. We will use the same con-

struction for both the sparse-to-sparse and non-sparse-to-non-

sparse case.

Take a given hypergraph (𝑉 , 𝐸). WLOG assume 𝑉 = {1, ..., 𝑛}.
Then we construct an 𝑛-player game, in which each player has two

actions, 𝑎0, 𝑎1. For any 𝑀 ⊆ {1, ..., 𝑛}, let a𝑀 be the payoff profile

in which the set of players playing 𝑎1 is exactly 𝑀 . Then let the

payoff 𝑢 (a𝑀 ) be 1 if𝑀 ∈ 𝐸 and 0 otherwise.

We now show that this reduction is valid by showing that the

game and the graph have the same symmetries. Let 𝜌 be a bijection.

Then:

𝜌 is a symmetry of (𝑉 , 𝐸) (1)

iff ∀𝑒 ∈ 2
𝑉
: 𝑒 ∈ 𝐸 ⇐⇒ 𝜌 (𝑒) ∈ 𝐸 (2)

iff ∀𝑀 ∈ 2
𝑉
: 𝑢 (a𝑀 ) = 1 ⇐⇒ 𝑢 (a𝜌 (𝑀) ) = 1 (3)

iff ∀𝑀 ∈ 2
𝑉
: 𝑢 (a𝑀 ) = 𝑢 (a𝜌 (𝑀) ) (4)

iff ∀a ∈ 𝐴 : 𝑢 (𝑎1, ..., 𝑎𝑛) = 𝑢 (𝑎𝜌 (1) , ..., 𝑎𝜌 (𝑛) ) (5)

iff 𝜌 is a symmetry of (𝐴,𝑢) (6)

It is easy to see that this construction can be performed in poly-

nomial (indeed linear) time for both sparse and non-sparse repre-

sentations.

GA→HA: We now reduce in the opposite direction. This is more

complicated and we therefore provide only a sketch.

Consider an 𝑛-player game (𝐴,𝑢). We construct the hypergraph

as follows. First, for each player 𝑖 , we generate a vertex. We also

generate log
2
( |𝐴𝑖 |) vertices that we use to encode 𝐴𝑖 , player 𝑖’s

actions and connect themwith the vertex representing 𝑖 . For players

𝑖, 𝑗 that have the same action label sets, this encoding must be done

consistently for 𝑖, 𝑗 .

We also need to add some kind of structure to ensure that sym-

metries of the hypergraph can only map the 𝑘th action-encoding



vertex of player 𝑖 on the 𝑘th action-encoding vertex of a player 𝑗

that has the same action label set as 𝑖 .

Next, we represent the payoff function 𝑢. To do so, we introduce

⌈log
2
( |𝑢 (𝐴) − {0}|)⌉ payoff encoding vertices. Note that |𝑢 (𝐴) −

{0}| is the number of distinct non-zero payoffs of the game. To

encode |𝑢 (𝐴) − {0}| we therefore need ⌈log
2
( |𝑢 (𝐴) − {0}|)⌉ bits.

We connect these bits in such a way that any symmetry must

map each of them onto itself. We fix some binary encoding of

𝑢 (𝐴) − {0}. For instance, let’s say the non-zero payoffs of the game

are {−3,−1, 7, 8, 10, 11, 13, 100}. Then we need three bits, and might

encode them as −3 ↦→ 000, −1 ↦→ 001, 7 ↦→ 010, 8 ↦→ 011, and so

forth.

For each a ∈ 𝐴 with 𝑢 (a) ≠ 0, we then add an edge that contains

for each Player 𝑖 the action encoding vertices corresponding to

𝑎𝑖 ; and those bits from the payoff encoding vertices that together

represent the payoff. (So, for example, if the payoff is encoded by

011, then the hyperedge contains the two lower payoff encoding

vertices. Similarly for the action encoding vertices.)

We omit a proof of the correctness of this reduction.

It is left to show that the reduction is polynomial-time for both

representation styles. For the sparse representation styles, it is triv-

ial because up to some small number of extra vertices and edges,

there is a one-to-one correspondence between edges of the hyper-

graph and action profiles with non-zero payoffs.

On to the non-sparse representation. Clearly each entry of the

adjacency matrix can be filled in polynomial (perhaps even constant

or logarithmic) time. It is left to show that the adjacency matrix is

not too large. In particular, we need to show that the size of the

adjacency matrix is polynomial in the size of the payoff matrix.

To assess the size of the adjacency matrix we need to count the

number of vertices in the above construction. First, the number of

player vertices is

𝑛 ≤ log
2
( |𝐴1 |) + ... + log

2
( |𝐴𝑛 |)

= log
2
( |𝐴1 | · ... · |𝐴𝑛 |)

= log
2
( |𝐴|) .

(The inequality assumes each player has at least two actions.) Sec-

ond, the number of action-encoding vertices is

⌈log
2
( |𝐴1 |)⌉ + ... + ⌈log

2
( |𝐴𝑛 |)⌉

≤ 2 log
2
( |𝐴1 |) + ... + 2 log

2
( |𝐴𝑛 |)

= 2 log
2
( |𝐴|) .

Finally, the number of payoff encoding vertices is about

⌈log
2
( |𝑢 (𝐴) |)⌉ ≤ 2 log

2
( |𝑢 (𝐴) |) ≤ 2 log

2
( |𝐴|) .

The overall number of vertices in the above construction is therefore

at most 5 log
2
( |𝐴|). Thus, the size (in terms of number of bits) of

the adjacency matrix is bound by

2
5(log

2
|𝐴 |) = |𝐴|5 .

Since |𝐴| is a lower bound on the size of the payoff matrix (in

bits), this is polynomial in the size of the game’s payoff matrix, as

required. □

One might wonder: In the non-sparse representation case, why

does the reduction to HA not also work if we use a more traditional

sense of game symmetries? If it were to work that would show that

GI is polynomial-time solvable! But this does not work (with the

proof strategy used above). In the current reduction, actions do not

get their own vertices. Thus, (even if we dropped the constraint

structures that prevent actions from being remapped), a hypergraph

automorphism cannot remap, e.g., an action encoded as 11011 to

an action encoded as 01010. To express full action relabelings in

the hypergraph, it seems that we need to introduce an action per

vertex. However, the size of the adjacency matrix then blows up

more than polynomially.

Combining Lemma F.2 and Theorems F.3 and F.5, we get a char-

acterization of the complexity of the graph automorphism problem.

Corollary F.6. GA is solvable in polynomial time on a non-sparse
representation and is GI-complete on a sparse representation.

F.3 An alternative notion of game symmetry
As mentioned in the main text, we only consider symmetries that

relabel the players and the above is on the computational problem

resulting from that notion of symmetry. As noted in footnote 3, this

was done in part to keep notation simple and an alternative, slightly

more complicated notion allows for the actions to be permuted. A

natural question then is what the complexity is of finding this new

type of symmetry in a given common-payoff game. In this case,

the answer is that finding symmetries is GI-complete regardless of

how the game is represented and follows almost immediately from

existing ideas from Mathon [21] and Gabarró et al. [10].

A player-action (PA) symmetry of a game is pair of a bijec-

tion 𝜌 : {1, ..., 𝑛} → {1, ..., 𝑛} on players and a family of bijections

𝜏𝑖 : 𝐴𝜌 (𝑖) → 𝐴𝑖 s.t. for all pure strategy profiles (𝑎1, ..., 𝑎𝑛),

𝑢 (𝑎1, ..., 𝑎𝑛) = 𝑢 (𝜏1 (𝑎𝜌 (1) ), ..., 𝜏𝑛 (𝑎𝜌 (𝑛) )).

So the idea in this new definition is that 𝜏𝑖 translates the action

names from those of player 𝜌 (𝑖) to player 𝑖 .

Define the PAGA problem analogously to the GA problem above,

as finding a generating set of the PA symmetries of a given common-

payoff game. This time, the complexity is independent of whether

the game is represented sparsely or not.

Theorem F.7. The PAGA problem is GI-complete.

Proof. PAGA→GI For their proof of GI-completeness of the

game isomorphism problem, Gabarró et al. [10] sketch how a general-

sum game can be represented as a graph in a way that maintains

the isomorphisms. In particular, we can therefore represent a sin-

gle common-payoff game as a graph in a way that maintains PA

symmetries. The have thus given a sketch of a polynomial-time

reduction from PAGA to the problem of finding the automorphisms

of a graph. This latter problem can in turn be reduced in polynomial

time to the graph isomorphism problem as was shown by Mathon

[21].

GI→PAGA Second, we show GI-hardness. As shown by Mathon

[21], it is enough to reduce the graph automorphism problem to

the PAGA problem. For this, we can slightly modify the construc-

tion of Gabarró et al. [10, Lemma 5]. Specifically, they reduce the

graph isomorphism problem to the 4-player general-sum game

isomorphism problem, where actions represent vertices and the

graph isomorphisms can be recovered from those PA game isomor-

phisms where the player isomorphism is 𝜌 = id. Obviously, the



same construction can be used to reduce the graph automorphism

problem to the general-sum game automorphism problem. The only

issue is therefore that their construction uses general-sum games,

but we can simply encode their payoff vectors as single numbers.

In particular, because their payoffs are binary, we might translate

(0, 0, 0, 0) ↦→ 0, (0, 0, 0, 1) ↦→ 1,(0, 0, 1, 0) ↦→ 2, and so forth. It’s easy

to see that the symmetries with 𝜌 = id remain the same under this

transformation. □

G THE COMPUTATIONAL COMPLEXITY OF
FINDING OPTIMAL SYMMETRIC
STRATEGIES

G.1 Polynomials
A (multivariate) polynomial in 𝑘 variables is a function

(𝑥1, ..., 𝑥𝑘 ) ↦→
∑

𝑒1,...,𝑒𝑘 ∈{1,...,𝑚}
𝑐 (𝑒1,...,𝑒𝑘 )𝑥

𝑒1
1
...𝑥

𝑒𝑘
1

for some𝑚, where the 𝑐 (𝑒1,...,𝑒𝑘 ) are some set of real coefficients.

The terms 𝑐 (𝑒1,...,𝑒𝑘 )𝑥
𝑒1
1
...𝑥

𝑒𝑘
1

for which 𝑐 (𝑒1,...,𝑒𝑘 ) ≠ 0 are called

the monomials of the polynomial. The maxdegree of a monomial
𝑐 (𝑒1,...,𝑒𝑘 )𝑥

𝑒1
1
...𝑥

𝑒𝑘
1

is max𝑖=1,...,𝑘 𝑒𝑖 . The maxdegree of a polynomial
is the maximum of the maxdegrees of its monomials. Similarly, the

total degree of a monomial 𝑐 (𝑒1,...,𝑒𝑘 )𝑥
𝑒1
1
...𝑥

𝑒𝑘
1

is

∑𝑘
𝑖=1 𝑒𝑖 . The total de-

gree of a polynomial is the maximum of the total degrees of its mono-

mials. The degree of a variable 𝑥𝑖 in a monomial 𝑐 (𝑒1,...,𝑒𝑘 )𝑥
𝑒1
1
...𝑥

𝑒𝑘
1

is 𝑒𝑖 . The maxdegree of 𝑥𝑖 in a polynomial is the maximum of the

maxdegrees of 𝑥𝑖 in all of the monomials.

We can partition the parameters of a polynomial into vectors

and write the polynomial as 𝑓 (x1, ..., x𝑘 ), where x1, ..., x𝑘 are real

vectors. We define the degree of x𝑖 in a monomial as the sum of

the degrees of the entries of x𝑖 in the monomial. We define the

maxdegree of x𝑖 in the polynomial as the maximum of the degrees

of x𝑖 in the polynomial’s monomials.

In the following we will interpret the set Δ(𝐴𝑖 ) of probability
distributions over 𝐴𝑖 as the set of |𝐴𝑖 |-dimensional vectors of non-

negative reals whose entries sum to one.Wewill index these vectors

by𝐴𝑖 (rather than numbers 1, ..., |𝐴𝑖 |). The sets Δ(𝐴𝑖 ) are also called
unit simplices.

G.2 Optimizing symmetric strategies as
maximizing polynomials

It is immediately obvious that in a symmetric game, the expected

utility as a function of the probabilities that each of the orbits assign

to each of the strategies is a polynomial over a Cartesian product

of unit simplices. Formally:

Proposition G.1. Let G be an 𝑛-player game and P ⊆ Γ(G)
be a subset of the game symmetries of G. Let the orbits of P be
𝑀1, ..., 𝑀𝑘 . Further, let the set of actions of orbit 𝑖 be 𝐴𝑖 . Then the
expected utility function over P-invariant strategy profiles of G is a
polynomial over Δ(𝐴1) × ... × Δ(𝐴𝑘 ) with a max degree of (at most)
max𝑖 |𝑀𝑖 | and a total degree of (at most) 𝑛. This polynomial can be
created in polynomial-time in the size of a sparse or non-sparse (as
per Appendix F.2) representation of the game.

It follows that we can use algorithms for optimizing polynomials

to find optimal symmetric strategies and that positive results on

optimizing polynomials transfer to finding optimal mixed strategies.

Unfortunately, these results are generally somewhat cumbersome

to state. This is because the optimum can in general not be repre-

sented exactly algebraically, even using 𝑛-th roots, as implied by the

Abel–Ruffini theorem. Positive results must therefore be given in

terms of approximations of the optimal solution. One striking result

from the literature is that, roughly speaking, for a fixed number of

variables, the optimal solution can be approximated in polynomial

time [16, Section 6.1]. Translated to our setting, this means that the

optimal symmetric strategy can be approximated in polynomial

time if we keep constant the number of orbits and the number of

actions available to each orbit, but potentially increase the number

of players in each orbit. For more discussion of the complexity of

optimizing polynomials on unit simplices, see de Klerk [6].

G.3 Expressing polynomials as symmetric
games

We now show that, conversely, for any polynomial over a Cartesian

product of simplices there exists a symmetric game whose expected

utility term is exactly that polynomial. However, depending on how

we represent polynomials and how we represent games, the size of

the game may blow up exponentially.

We first show that each polynomial over Δ(𝐴1) × ...×Δ(𝐴𝑘 ) can
be rewritten in such a way that each input x𝑖 appears in the same

degree in all monomials.

Lemma G.2. Let 𝑓 (x1, ..., x𝑘 ) be a polynomial on real vectors of
dimensions 𝐴1, ..., 𝐴𝑘 . Then there exists a polynomial 𝑔 on the same
inputs s.t. for all (x1, ..., x𝑘 ) ∈ Δ(𝐴1) × ... × Δ(𝐴𝑘 )

𝑔(x1, ..., x𝑘 ) = 𝑓 (x1, ..., x𝑘 ),
and the degree of every x𝑖 in all monomials of 𝑔 is the maxdegree of
x𝑖 in 𝑓 .

Proof. Consider any monomial
˜𝑓 of 𝑓 in which x𝑖 does not have

its max degree. Then for all (x1, ..., x𝑘 ) ∈ Δ(𝐴1) × ... × Δ(𝐴𝑘 ),
˜𝑓 (x1, ..., x𝑘 )

=
©«

∑
𝑎𝑖 ∈𝐴𝑖

𝑥𝑖,𝑎𝑖
ª®¬ ˜𝑓 (x1, ..., x𝑘 )

=
∑
𝑎𝑖 ∈𝐴𝑖

𝑥𝑖,𝑎𝑖
˜𝑓 (x1, ..., x𝑘 ) .

Notice that this is the sum of |𝐴𝑖 | monomials in which x𝑖 occurs
in 1 plus the degree in which it occurs in

˜𝑓 . We can iterate this

transformation until we arrive at the desired
˜𝑓 . □

Note, however, that if web take a given polynomial represented

as a sum of monomials – e.g., 𝑓 (𝑥1, 𝑥2) = 𝑥4
1
− 3𝑥2 – and rewriting

it as outlined in the Lemma and its proof, the size may blow up

exponentially. E.g., 𝑓 (𝑥1, 𝑥2) = 𝑥4
1
− 3𝑥2 = 𝑥4

1
− 3(𝑥1 + 𝑥2)3𝑥2

and (𝑥1 + 𝑥2)3 expands into a sum of 2
3 = 8 terms. However, in

some table-of-coefficient representations of polynomials the size

of the instance does not change at all and the transformation can

be performed in polynomial time in the input. For example, this is

the case if 𝑘 = 1 and we represent a polynomial as a table of the

coefficients of all terms 𝑥
𝑒1
1
...𝑥

𝑒𝑘
𝑘

where 𝑒1 + ... + 𝑒𝑘 are at most the

polynomial’s maxdegree.



Oncewe have a polynomial of the structure described in LemmaG.2,

we can transform it into a game:

Proposition G.3. Let 𝑓 (x1, ..., x𝑘 ) be a polynomial in which each
x𝑖 appears in the same degree in all monomials. Then we can construct
a game G with symmetries P that create 𝑘 orbits, where the number
of players in orbit 𝑖 = 1, ..., 𝑘 is the degree of x𝑖 in 𝑓 and the number
of actions for the players in orbit 𝑖 is the number of entries of x𝑖 .

Proof. Consider games Γ with orbits𝑀1, ..., 𝑀𝑘 of the specified

sizes and sets of actions 𝐴1, ..., 𝐴𝑘 also of the specified sizes where

specifically the players in each𝑀𝑖 are totally symmetric. Then such

a game if fully specified as follows. For each family of numbers

𝑛1,1, ..., 𝑛1, |𝐴1 |, ...., 𝑛𝑘,1, ..., 𝑛𝑘, |𝐴𝑘 | with 𝑛𝑖,1 + ... + 𝑛𝑖, |𝐴𝑖 | = |𝑀𝑖 | we
need to specify the utility 𝑣 obtained if for all 𝑖, 𝑙 , 𝑛𝑖, 𝑗 players in

orbit 𝑖 play action number 𝑗 from 𝐴𝑖 .

In the expected utility function of G, each such entry creates a

summand

𝑣 ·
(∏
𝑖

(
|𝑀𝑖 |

𝑛𝑖,1, ..., 𝑛𝑖, |𝐴𝑖 |

)) ∏
𝑖,𝑙

𝑝
𝑛𝑖,𝑙
𝑖,𝑙
,

where 𝑝𝑖,𝑙 is the probability with which players in orbit 𝑖 player

action 𝑙 and
( |𝑀𝑖 |
𝑛𝑖,1,...,𝑛𝑖,|𝐴𝑖 |

)
is a multinomial. By setting 𝑣 appropri-

ately, we can thus obtain any monomial with exponents (𝑛𝑖,𝑙 )𝑖,𝑙 . By
setting the values 𝑣 all different sets of (𝑛𝑖,𝑙 )𝑖,𝑙 appropriately, we
obtain any polynomial in which each (𝑛𝑖,𝑙 )𝑙 appears with the same

degree |𝑀𝑖 | in all monomials. □

Note that if the polynomial is represented as a table of coeffi-

cients, then this reduction takes linear time in the size of the input.

Similarly, if the polynomial is given as a list of only the monomials

with non-zero coefficients – all of which satisfy the degree require-

ment – the reduction can also be done in polynomial time. This in

particular gives us the following negative result, translated from

the literature on optimizing polynomials:

Corollary G.4. Deciding for a given game G with symmetries
P and a given number 𝐾 whether there is a P-invariant profile with
expected utility at least 𝐾 is NP-hard, even for 2-player symmetric
games.

Proof. Follows from Proposition G.3 and the NP-hardness of

optimizing quadratic polynomials over the unit simplex [6, Section

3.2]. □
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